\qquad
\qquad Date \qquad

Is it possible to construct a triangle with the given side lengths? Explain.

1. $2 \mathrm{yd}, 3 \mathrm{yd}, 7 \mathrm{yd}$
2. $4 \mathrm{~cm}, 4 \mathrm{~cm}, 8 \mathrm{~cm}$
3. $12 \mathrm{ft}, 14 \mathrm{ft}, 15 \mathrm{ft}$
4. $5.4 \mathrm{~m}, 8.6 \mathrm{~m}, 13 \mathrm{~m}$
5. $\frac{4}{5}$ in., $3 \frac{2}{5}$ in., 4 in.
6. $18 \mathrm{~mm}, 25 \mathrm{~mm}, 52 \mathrm{~mm}$

Determine whether the given lengths can be side lengths of a right triangle. Explain.

7. $6 \mathrm{ft}, 10 \mathrm{ft}, 12 \mathrm{ft}$
8. 10 in., 24 in., 26 in.
9. $20 \mathrm{~m}, 21 \mathrm{~m}, 29 \mathrm{~m}$
10. $15 \mathrm{~cm}, 17 \mathrm{~cm}, 21 \mathrm{~cm}$
11. $14 \mathrm{ft}, 22.5 \mathrm{ft}, 26.5 \mathrm{ft}$
12. $12 \mathrm{yd}, 35 \mathrm{yd}, 38 \mathrm{yd}$

Determine whether the triangles are right triangles. Explain.
13.

14.

\qquad
\qquad
15. A company is designing a new logo in the shape of a triangle. Two of the sides each measure 2 cm . Which of the following is a possible measure for the third side: $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$?
\qquad
16. Three nature trails intersect to form a triangle around a park. The lengths of the trails are $2.8 \mathrm{mi}, 3.2 \mathrm{mi}$, and 4.1 mi . Do the trails form a right triangle? Explain.
\qquad
17. The sides of a triangular game board are $1 \mathrm{ft}, 1 \mathrm{ft}$, and $\sqrt{2} \mathrm{ft}$ in length. Is the game board in the shape of a right triangle? Explain.
18. How do you know that the lengths 6 in., 8 in., and 25 in. cannot form a right triangle without using the Converse of the Pythagorean Theorem?

