9-6

Variability of Data

What You'll Learn

© CONTENT STANDARDS 6.SP.2, 6.SP.3, 6.SP.5.c

To find and use measures of variability to describe and compare data sets

New Vocabulary measure of center, measure of variability, mean absolute deviation (MAD), interquartile range (IQR)

Why Learn This?

Farmers can use growth patterns in plants to make predictions about future crop yields.

Big Boy Tomato Plant Yields										
Plant	Plant 1 2 3 4 5 6 7 8 9 10									10
Number of Tomatoes 17 22 16 45 18 24 30 22 27 19										

You can describe a data set by studying its center, spread, and overall shape. A value that describes how data is centered is called a measure of center. The mean, median, and mode are measures of center.

A value that describes how data is spread out, such as the range, is called a measure of variability. One measure of variability is mean absolute deviation. Mean absolute deviation (MAD) is the average amount that the data values vary from the mean.

Vocabulary Tip

To deviate means to move away from something. You can think of the MAD as average amount by which the data move away from the mean.

EXAMPLE

Using Variability of Data: Mean Absolute Deviation

A scientist investigated the yield of his Big Boy tomato plants, displayed above. How can you describe the variability in the yields?

One way to describe the variability is to find the mean absolute deviation (MAD) of the tomato data.

Step 1: Find the mean number of tomatoes over 10 days. Record the mean as shown in the table below.

Big Boy Tomato Yields										
Plant 1 2 3 4 5 6 7 8 9 10										
Number of Tomatoes	17	22	16	45	18	24	30	22	27	19
Mean	Mean 24 24 24 24 24 24 24 24 24 24 24 24									
Distance from Mean	7	2	8	21	6	0	6	2	3	5

Step 2: Find the distance between the number of tomatoes on each plant and the mean. Write each distance as a positive number.

Step 3: Calculate the mean of all the distances in the bottom row.

$$\frac{7+2+8+21+6+0+6+2+3+5}{10} = \frac{60}{10} = 6$$

The MAD is 6. So, the average difference between the data values and the mean is 6.

Example

- **1** Using Variability of Data: Mean Absolute Deviation The table shows the number of minutes ten students spent talking to their friends on the phone in a day. Find the mean absolute deviation.
 - **Step 1:** Find the mean number of minutes for all the students. Record the mean in the table below.
 - **Step 2:** Find the distance between each student's number of minutes and the mean. Write each distance as a positive number.

Minutes on the Phone with Friends										
Student	1	2	3	4	5	6	7	8	9	10
Number of Minutes	15	35	55	45	60	20	30	25	45	20
Mean	35	35	35	35	35	35	35	35	35	35
Distance from Mean	20	0	20	10						

Step 3: Calculate the mean of all the distances in the bottom row.

$$20 + 0 + 20 + 10 + 25 + 15 + 5 + 10 + 10 + 15 = 130$$
 $\frac{130}{10} = 100$
The MAD is

Another measure of variability is the interquartile range (IQR). This measure gives the spread of the middle half of the data. To find the IQR, subtract the lower quartile of the data from the upper quartile of the data.
The mean absolute deviation and the interquartile range give you information about the variability of a data set using a single number. This is helpful when comparing the variability of two data sets.

Using Variability of Data: Interquartile Range

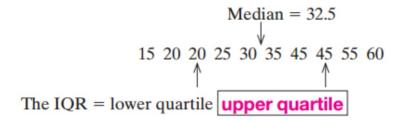
Big Boy Tomato Yields												
Plant 1 2 3 4 5 6 7 8 9 10												
Number of Tomatoes	Number of Tomatoes 17 22 16 45 18 24 30 22 27 19											
Mean 24 24 24 24 24 24 24 24 24 24 24 24 24												
Distance from Mean												

Describe the variability of the Big Boy tomato data in Example 1 in a different way.

Another way to describe the variability is to find the interquartile range for the data.

Order the data to determine the mean, lower quartile, and upper quartile.

The IQR = upper quartile - lower quartile = 27 - 18 = 9.


You can say that the interquartile range of the data values is 9.

Example

Using Variability of Data: Interquartile Range Describe the variability of the talking on the phone data in Example 1 in a different way.

Another way to describe the variability is to find the interquartile range for the data.

Order the data to determine the mean, the lower quartile, and the upper quartile.

You can say that the interquartile range of the data values is 25.

Quick Check

1. A scientist investigated the yield of his Big Boy tomato plants. The table shows his data.

Plant	1	2	3	4	5	6	7	8	9	10
Number of Tomatoes	17	22	16	45	18	24	30	22	27	19
Mean	24	24	24	24	24	24	24	24	24	24
Distance from Mean	7	2	8	21	6	0	6	2	3	5

The mean average deviation of the data above is 6.

Suppose that Plant 1 grows 5 more tomatoes for a total of 22 instead of 17.

- **a.** What is the new mean absolute deviation for the data?
- **b.** What does the change in MAD for the new data set tell you about the data set? Explain.
- 2. Suppose that two more Big Boy tomato plants produced 20 and 25 tomatoes.
 - **a.** What is the interquartile range for the 12 data values?

b. How does this result affect your conclusion about the middle range of the data?

We will wo	rk through the Anything we d	e guided prob o not finish in	lem solving v	vorksheet ecome homev	vork.

9			
ğ			
S N			
Đ.			
2			
2	,		
Ē			

Name	Cla	Class				Date			
9-6 • Guided I	Prob	lem	Sol	ving			••••		
GPS Student Page	338,	Exerc	ise 1	9:					
Use the table and info	rmatio	n belo	ow.						
		Dail	ly Exer	cise	7				
Day	1	2	3	4	5	6	7	8	
Talia's Exercise (min)	40	60	55	40	20	32	30	45	
The MAD is 7 and the	IQR	is 14.							
Reasoning Using Talia the measures of variab									
Understand									
1. What are you bein	g aske	ed to d	o?	2000 000 000 000	ra .				
2. Cross out and cha									
3. What statistical na	me ca	n you	call 0 i	n the ne	w data s	set? _			
Plan and Carry O	ıt								
4. Without calculating	g, pre	dict th	e effec	t of the r	new dat	a on tl	ne mea	ın. Explaii	n.
5. What effect will th	is hav	e on th	ne MA	D? Why	?				
6. What effect will th	e new	data l	nave o	n the IQ	R? Why	?			
7. Overall, how does	the no	ew dat	a affec	t the var	iability	of the	data s	et?	
Check									
8. How can you chec	k you	r answ	er?						
9. Is your answer rea	sonab	le?							
Solve Another Pr	oblei	m							
10. Using Talia's original each value by 10 n									ing