Using the Pythagorean Theorem

Pythagorean Theorem - Day 2

I can use the Pythagorean Theorem to find missing measurements of triangles.

Gather your clicker and notebook. There are 4 clicker questions (a grade) and your assignment is awaiting you in gmail - an exit ticket.

We remember from yesterday, that the Pythagorean Theorem states:

$$a^2 + b^2 = c^2$$

Also, remember that this theorem only applies to right triangles.

In a right triangle, the hypotenuse is always opposite the right angle, and it is the longest side of a triangle. The remaining two sides are called legs.

Find the length of the hypotenuse in a right triangle with legs of 3 feet and 4 feet. _____ feet. Text in your number

response.

n n²

3 ft

Using the Pythagorean Theorem

What You'll Learn

To use the Pythagorean Theorem to find missing measurements

Why Learn This?

You can use the Pythagorean Theorem to find distances without measuring, including distances in space.

When you know the length of one leg and the hypotenuse of a right triangle, you can use the Pythagorean Theorem to find the length of the other leg.

EXAMPLE

Finding a Leg of a Right Triangle

Find the missing leg length of the triangle below.

$$81 + b^2 = 225 \leftarrow$$
 Simplify.

$$b^2 = 144$$

 $b^2 = 144 \leftarrow \text{Subtract 81 from each side.}$

$$b^2 = 144$$
 $\sqrt{b^2} = \sqrt{14}$

 $\sqrt{b^2} = \sqrt{144}$ \leftarrow Find the positive square root of each side. $\sqrt{2}$

$$(b) = 12$$
 \leftarrow Simplify.

The length of the other leg is 12 cm.

1 EXAMPLE Find the missing leg length of the triangle.

 $a^2 + 12^2 = 13^2$ Substitute 12 for b and 13 for c.

 $\sqrt{a^2} = \sqrt{25}$ Find the positive square root of each side.

The length of the other leg is 5 cm.

mplify. $13^{2} - 13^{3} = 0.3$ ag is 5 cm. 169 - 144 = 0.3 $\sqrt{25} = \sqrt{19}$ 5 = 0.3

Example

• Finding a Leg of a Right Triangle Find the missing leg length of the triangle

289 - 225 -225 64 - 161=1a2

 $a^2 + b^2 = c^2$

 \leftarrow Use the Pythagorean Theorem.

$$a^2 + 15^2 = 17^2$$

 \leftarrow Substitute 15 for *b* and 17 for *c*.

$$a^2 + 225 = 289$$

 \leftarrow Simplify.

$$a^2 = 64$$

 \leftarrow Subtract.

$$\sqrt{a^2} = \sqrt{64}$$

 $\leftarrow \ \ \text{Find the positive square root of each side}.$

 $\leftarrow \ \text{Simplify}.$

The length of the other leg is 8 m.

Quick Check

1. The hypotenuse of a right triangle is 20.2 ft long. One leg is 12.6 ft long. Find the length of the other leg to the nearest tenth.

True or false? $(2^2 + b^2 - c^2)$ c squared minus a squared equals b squared.

$$c^3 - a^2 = b^3$$

False

Find the missing leg length of a triangle whose hypotenuse is 13 cm and a leg is 12 cm. cm

Text in your number response.

ØQuick Check

2. Construction The bottom of an 18-ft ladder is 5 ft from the side of a house. Find the distance from the top of the ladder to the ground. Round to the nearest tenth of a foot.

The bottom of a ten foot ladder is 2.5 feet from the side of a wall. How far, to the nearest tenth, is the top of the ladder from the ground?

(A) 10.3 feet

9.5 feet

@ 9.9 feet

10.1 feet

(国) 9.7 feet

Check Your Understanding

- Vocabulary Name the two legs and the hypotenuse of the triangle at the left.
- 2. Fill in the blanks for each step to find the missing leg length of the triangle below.

a.
$$6^2 + b^2 = \blacksquare^2$$

b.
$$\blacksquare + b^2 = 100$$

$$b^2 = \blacksquare$$

Power down your clickers and put them away.

Go to your email and find the email from me called Exit Ticket. Reply to me on this:
Explain the <u>difference</u> of how to find the length of the hypotenuse when you know the measurements of both legs, and how to find a missing leg length when you know the length of the hypotenuse and one leg.

This is due before the bell rings. Please use complete sentences and punctuation.