What You'll Learn To graph and write algebraic inequalities New Vocabulary inequality, solution of an inequality ### Why Learn This? When you use an expression such as *at least* or *at most*, you are talking about an inequality. You can use inequalities to represent situations that involve minimum or maximum amounts. ### **Adding and Subtracting Rational Numbers** Find each sum or difference. Write your answer in simplest form. 1. $$-6.75 + 3.68$$ **1.** $$-6.75 + 3.68$$ **2.** $\frac{7}{12} + \frac{11}{12}$ **3.** $$6-4.2$$ **4.** $\frac{5}{8}-\frac{3}{4}$ ### **Dividing Rational Numbers** Find each quotient. Write your answer in simplest form. **8.** $$-6.4 \div 1.6$$ **8.** $$-6.4 \div 1.6$$ **9.** $-\frac{3}{8} \div \frac{1}{2}$ **10.** $2.75 \div 0.5$ ### **Solving Equations** Solve each equation. Write your answer in simplest form. **11.** $$x + 2 = 7$$ **12.** $$-8.4 + b = -3.1$$ **13.** $$t + \frac{2}{3} = \frac{3}{4}$$ **14.** $$7.2 = -3h$$ **15.** $$\frac{w}{2} = -10$$ **16.** $$-\frac{3}{4}a = \frac{5}{6}$$ **17.** $$3 + 4g = 23$$ **18.** $$1.5k - 2.4 = 2.1$$ 11. $$x + 2 = 7$$ 12. $-8.4 + b = -3.1$ 13. $t + \frac{2}{3} = \frac{3}{4}$ 14. $7.2 = -3h$ 15. $\frac{w}{2} = -10$ 16. $-\frac{3}{4}a = \frac{5}{6}$ 17. $3 + 4g = 23$ 18. $1.5k - 2.4 = 2.1$ 19. $\frac{1}{2} + \frac{m}{5} = \frac{3}{10}$ ### **Multiplying Rational Numbers** Find each product. Write your answer in simplest form. **5.** $$1\frac{1}{2} \cdot (-7)$$ **6.** $0.4 \cdot 0.6$ **7.** $(-1.8)(-4)$ A mathematical sentence that contains $<, >, \le, \ge$, or \ne is an inequality. Sometimes an inequality contains a variable, as in $x \ge 2$. A solution of an inequality is any value that makes the inequality true. For example, 6, 8, and 15 are solutions of $x \ge 6$ because $6 \ge 6$, $8 \ge 6$, and $15 \ge 6$. ## **EXAMPLE** Identifying Solutions of an Inequality Find whether each number is a solution of $x \le 2$; -3, 0, 2, 4.5. Test each value by replacing the variable and evaluating the sentence. - $-3 \le 2 \leftarrow -3$ is less than or equal to 2: true. \checkmark - $0 \le 2 \leftarrow 0$ is less than or equal to 2: true. \checkmark - $2 \le 2 \leftarrow 2$ is less than or equal to 2: true. \checkmark - $4.5 \le 2 \leftarrow 4.5$ is less than or equal to 2: false. **x** The numbers -3, 0, and 2 are solutions of $x \le 2$. The number 4.5 is not a solution of $x \le 2$. 1 EXAMPLE Tell whether each number is a solution of k > -6: -8, -6, 0, 3, 7. The numbers 0, 3, and 7 are solutions of k > -6. The numbers -8 and -6 are not. A graph can show all the numbers in a solution. You use closed circles and open circles to show whether numbers are included in the solution. 2 EXAMPLE Graph the solution of each inequality on a number line. Use a closed circle at 2 to show that *r* can equal 2. **b.** $$m > -5$$ Use show Use an open circle at -5 to show that *m* can't equal -5. # **EXAMPLE** Graphing Inequalities - Oraph the solution of each inequality. - a. $n \ge -3$ Use a closed circle at $-\mathbf{3}$ to show that n can equal -3. **b.** h < 7 Use an open circle at 7 to show that h cannot equal 7. 1. Graph the solution of w < -3. A. -7-6-5-4-3-2 B. -7-6-5-4-3-2 C. 1 2 3 4 5 6 D. -5-4-3-2-1 0 You can write an inequality by analyzing its graph. # EXAMPLE Writing Inequalities 3 Write an inequality for the graph. x>2 \leftarrow Since the graph shows values greater than 2, use >. 3 EXAMPLE Write an inequality. Since the circle at $$-4$$ is open, use $<$ or $>$. z < -4 Since the graph shows values less than -4, use <. You can write inequalities to describe real-world situations. ### EXAMPLE ### **Application: Nutrition** To be labeled sugar free, a food product must contain less than 0.5 g of sugar per serving. Write an inequality to describe this requirement. Words amount of sugar is less than 0.5 g of sugar Let s = the number of grams of sugar in a serving of food. Equation S < 0.5 The inequality is s < 0.5. The inequality is $a \ge 18$. 1. Write an inequality for the graph. - A. x > -3 - B. $x \ge -3$ - C. $x \le -3$ - D. x < -3 - . Write an inequality for "To qualify for the race, your time can be at most 62 seconds." - A. $t \ge 62$ - B. t > 62 - C. t < 62 - D. $t \le 62$ ### Extra practice problems For more exercises, see Extra Skills and Word Problems. Which numbers are solutions of each inequality? 7. $$x < 1; -2, 1, 2$$ 8. $$x > -5; -7, -5, -1$$ 9. $$x \le -9; -12, -4, 2$$ **10.** $$x < -8; -10, -5, 0$$ ### Extra practice problems Graph the solution of each inequality. **11.** $$x \ge 4$$ **12.** $$x \le -2$$ **13.** $$x < 2$$ **11.** $$x \ge 4$$ **12.** $x \le -2$ **13.** $x < 2$ **14.** $x > -4$ **15.** $$x \le 0$$ **16.** $$h > -5$$ 17. $$t \ge -5$$ **15.** $$x \le 0$$ **16.** $h > -5$ **17.** $t \ge -5$ **18.** $p < -6$ ### Extra practice problems Write an inequality for each graph. Class Date ___ ### Practice 3-1 ### **Graphing and Writing Inequalities** Graph the solution of each inequality on a number line. 1. $$x \le 3$$ 2. $$t > 1$$ $\xrightarrow{-4 -3 -2 -1}$ 0 1 2 3 4 3. $$q \ge -10$$ For each inequality, tell whether the number in bold is a solution. 6. $$p > -3$$; 3 _____ 7. $$k \ge 5$$; 0 _____ **8.** $$3z \le 12$$; **4**______ 9. $$n-5>3$$; 6 **10.** $$2g + 8 \ge 3$$; **-1** Write an inequality for each graph. 11. _____ Write an inequality for each statement. Graph each solution on the number line shown. 13. You can walk there in 20 minutes or less. 14. Each prize is worth over \$150. - A species of catfish, malapterurus electricus, can generate up to 350 volts of electricity. - Write an inequality to represent the amount of electricity generated by the catfish. b. Draw a graph of the inequality you wrote in a.