

© CONTENT STANDARDS

What You'll Learn

To evaluate functions and complete input-output tables

New Vocabulary function, function rule

Why Learn This?

The time it takes you to get to your destination is a function of how fast you travel. Your speed affects how long the trip will take.

A function is a rule that assigns to each input value exactly one output value. A function rule is an equation that describes a function.

You can use a function rule to evaluate a function. Functions have input variables and output variables. Examples of function rules appear below.

Juan begins his exercise walk from his friend's house which is 50 m from his own house. The function d = 3t + 50 gives the distance d in meters after t seconds that Juan is from his own house while walking. Find the output d for the input t = 10.

$$d = 3t + 50$$
 \leftarrow Write the function.
 $d = 3(10) + 50$ \leftarrow Substitute 10 for t .
 $d = 30 + 50$ \leftarrow Simplify.
 $d = 80$

The output d for the input t = 10 is 80. So, after 10 minutes of walking, Juan is 80 meters from his house.

Examples

1 Evaluating Functions Julia deposited \$40 in a savings account. The function s = 5w + 40 gives the total savings s in dollars after w weeks that Julia has been saving. Find the output s for the input w = 12.

$$s = 5w + 40$$
 \leftarrow Write the function.
 $s = 5 \cdot \boxed{12} + 40$ \leftarrow Substitute the input value for w .
 $s = \boxed{60} + 40$ \leftarrow Simplify.
 $s = \boxed{100}$

The output s for the input w = | 12 | is | 100 |. So, after depositing \$40, Julia's total savings is \$100 |.

table talk through this problem

Debbie earns \$15 plus \$10 per hour mowing lawns. The function e = 10h + 15 gives her earnings e in dollars after mowing lawns for h hours. Find the output e for the input h = 3.

An input-output table is useful to evaluate multiple values for a function. It also helps you organize data when the function represents a real-world situation.

EXAMPLE Input-Output Tables

2 The function $t = \frac{1}{2}m - 12$ gives the temperature t in a container in degrees Celsius m minutes before, at the start, and during an experiment. Use the function to make an input-output table for m = -2, -1, 0, 1, and 2.

Input m (mins)	Output t (temp)
-2	-13
-1	$-12\frac{1}{2}$
0	-12
1	$-11\frac{1}{2}$
2	-11

$$\leftarrow \frac{1}{2}(-2) - 12 = -13$$

$$\leftarrow \frac{1}{2}(-1) - 12 = -12\frac{1}{2}$$

$$\leftarrow \frac{1}{2}(0) - 12 = -12$$

$$\leftarrow \frac{1}{2}(1) - 12 = -11\frac{1}{2}$$

$$\leftarrow \frac{1}{2}(2) - 12 = -11$$

Input-Output Tables The function t = 2h + 15 gives the outdoor temperature t in degrees Fahrenheit h hours before, at, and after sunrise on a cold winter day. Use the function to complete the table for h = -4, -2, 0, 2, 4.

Input h	Output t
-4	7
-2	11
0	15
2	19
4	23

Table talk through this one---you will need to make a input-output table

The function $a = \frac{1}{4}m + 8$ gives the amount of water a in pints m minutes before, at the start, and during an experiment. Use the function to make an inputoutput table for m = -2, -1, 0, 1, and 2.

To encourage recycling, some states require a five-cent deposit on drink containers. The total deposit you pay depends on how many containers you buy. You can describe this relationship with a function rule.

 $d = 0.05c \leftarrow \text{input variable } c = \text{number of containers}$ output variable d = deposit

EXAMPLE Application: Recycling

3 Recycling Complete the table of input-output pairs for the function rule d = 0.05c, where d represents the deposit in dollars and c represents the number of containers.

Input c (number of containers)	Output d (dollars)
6	
12	
24	

$$\leftarrow 0.05 \times 6 = 0.30$$

$$\leftarrow 0.05 \times 12 = 0.60$$

$$\leftarrow 0.05 \times 24 = 1.20$$

E Input-Output Table Application Complete the table of input-output values for the function rule t = 4c, where c represents the number of cars and t represents the number of tires.

Input c (number of cars)	Output t (number of tires)
3	12
6	24
9	36

Table talk to solve this problem

Quick Check

1. The function $F = \frac{9}{5}C + 32$ converts temperatures in degrees Celsius, C, to degrees Fahrenheit, F. Evaluate the function for C = 20.

2. Use the function $m = \frac{1}{3}n + 1$ to make an input-output table for n = -1, 0, 1, and 2.

Input n	Output m
-1	
0	
1	
2	

3. The deposit on a drink container is \$.10 in the state of Michigan. Use the function rule d = 0.1c. Make a table of input-output pairs to show the total deposits on 5, 10, and 15 containers.

Input c	Output d

4. Complete the input-output table for the function f = 3 + n.

Input n	0	1	2	3
Output f	3			

You have a short assignment worksheet, and time to begin working on it now.

Reteaching 3-2 Functions

A function describes the relationship between two variables called the input and the output. In a function, each input value has only one output value.

Function:
$$y = 2x + 4$$
 $\uparrow \qquad \uparrow$

output variable $y \qquad input \ variable \ x$

You can list input/output pairs in a table. y = 2x + 4 Input x Output y

$$y=2x+4$$

۱L	Input x	Output y
	-10	-16
	-5	-6
	0	4
Г	1	6

To find output y, substitute values for input x into the function equation.

into the function equation.
For
$$x = -10$$
: $y = 2(-10) + 4$
 $y = -16$

$$v = -16$$

You can also show input/output pairs using function rules.

on rule:

$$y = 2x + 4$$

$$y = 2(-10) + 4 = -16$$

$$\uparrow \qquad \uparrow$$

$$input \qquad output$$

Find y when x = 0.

$$y = 0.$$

 $y = 2(0) + 4$
 $y = 4$

Complete the table of input/output pairs for each function.

1. y = 3x

2.
$$d = 20r$$

3.
$$y = 25 - 2x$$

Input x	Output y
5	
7	
9	
11	

Input r	Output d
1	
2	
3	
	160

Input x	Output y
0	
1	
	21
	19

Use the function rule y = 3x + 1. Find each output.

4. y when x = 0.

5.
$$y$$
 when $x = 1$.
= 3(____) + 1

6.
$$y \text{ when } x = 5.$$

7. y when
$$x = -6$$
.

Course 3 Lesson 3-2 Reteaching