You need your Evernote notes today; no clickers.

6-4 Exponents and Division

© CONTENT STANDARDS 8.EE.1

What You'll Learn

To divide powers with the same base and to simplify expressions with negative exponents

Why Learn This?

Nanorobots are microscopic machines that may soon be used to fight illness inside the human body. When working with very small numbers, such as the length of a nanorobot, you often divide expressions with exponents.

You can divide powers with the same base by writing out all the factors.

$$\frac{7^5}{7^3} = \frac{\cancel{1}^{1} \cdot \cancel{1}^{1} \cdot \cancel{1}^{1} \cdot \cancel{7} \cdot \cancel{7}}{\cancel{1}^{1} \cdot \cancel{1}^{1} \cdot \cancel{1}^{1}} = \frac{7 \cdot 7}{1} = 7^2$$

Put this into your notes.

Notice that 5 - 3 = 2. This example suggests the following rule.

KEY CONCEPTS Dividing Powers With the Same Base

To divide nonzero numbers or variables with the same nonzero base, subtract the exponents.

Arithmetic

$$\frac{8^5}{3} = 8(5-3) = 8^2$$

Algebra

$$\frac{8^5}{8^3} = 8^{(5-3)} = 8^2$$
 $\frac{a^m}{a^n} = a^{(m-n)}$, where $a \neq 0$

Key Concepts

Dividing Powers With the Same Base

To divide nonzero numbers or variables with the same nonzero base,

subtract the exponents.

$$\frac{8^5}{8^3} = 8^{(5 - 3)} = 8^{2}$$

Arithmetic Algebra
$$\frac{8^5}{8^3} = 8^{(5 - 3)} = 8^{2}$$

$$\frac{a^m}{a^n} = a^{(m - n)}, \text{ where } a \neq 0.$$

Zero as an Exponent

For any nonzero number a, $a^0 = \boxed{1}$.

Example
$$9^0 = \boxed{1}$$

Negative Exponents

For any nonzero number a and integers $n, a^{-n} = \frac{1}{a^n}$. **Example** $8^{-5} = \frac{1}{8^5}$.

Example
$$8^{-5} = \frac{1}{8^5}$$
.

EXAMPLE Dividing Powers

Write $\frac{m^{12}}{m^5}$ using a single exponent.

$$\frac{m^{12}}{m^5} = m^{(12-5)} \leftarrow \text{Subtract exponents with the same base.}$$
 $= m^7 \leftarrow \text{Simplify.}$

Examples

1 Dividing Powers Write $\frac{x^{14}}{r^9}$ using a single exponent.

$$\frac{x^{14}}{x^9} = x^{(14 - 9)} \leftarrow \text{Subtract} \text{ exponents with the same base.}$$

$$= x^{5} \leftarrow \text{Simplify.}$$

What does the exponent 0 mean? Consider finding the quotient $\frac{3^5}{3^5}$.

If you subtract exponents, $\frac{3^5}{3^5} = 3(5-5) = 3^0$.

If you write factors,
$$\frac{3^5}{3^5} = \underbrace{\overset{3^1}{\cancel{5}^1} \cdot \overset{1}{\cancel{5}^1} \cdot \overset{1}{\cancel{5}^1} \cdot \overset{1}{\cancel{5}^1} \cdot \overset{1}{\cancel{5}^1}}_{1\cancel{5}^1 \cdot 1\cancel{5}^1 \cdot 1\cancel{5}^1}$$
$$= \frac{1}{1} = 1.$$

into Notice that $\frac{3^5}{3^5} = 3^0$ and $\frac{3^5}{3^5} = 1$. This suggests the following rule. your notes

KEY CONCEPTS Zero as an Exponent

For any nonzero number a, $a^0 = 1$.

Example
$$9^0 = 1$$

EXAMPLE

Expressions With a Zero Exponent

a.
$$(-8)^0$$

$$(-8)^0 = 1$$

b.
$$3m^0$$

$$(-8)^0 = 1$$
 \leftarrow Simplify. \rightarrow $3m^0 = 3 \cdot 1 = 3$

Put this **Expression With a Zero Exponent** Simplify each expression.

a.
$$(-5)^0$$

 $(-5)^0 = \boxed{1} \leftarrow \text{Simplify.}$

vour notes

To understand negative exponents, consider finding the quotient $\frac{6^2}{6^5}$.

If you subtract exponents, $\frac{6^2}{6^5} = 6^{(2-5)} = 6^{-3}$.

If you write factors, $\frac{6^2}{6^5} = \frac{6^1 \cdot 6^1}{16 \cdot 16 \cdot 6 \cdot 6 \cdot 6}$

$$= \frac{1}{6 \cdot 6 \cdot 6} = \frac{1}{6^3}.$$

Notice that $\frac{6^2}{6^5} = 6^{-3}$ and $\frac{6^2}{6^5} = \frac{1}{6^3}$. This suggests the following rule. **Put this into**

KEY CONCEPTS Negative Exponents

For any nonzero number a and integer n, $a^{-n} = \frac{1}{a^n}$.

Example
$$8^{-5} = \frac{1}{8^5}$$

To simplify an expression with negative exponents, you can first write the expression with a positive exponent.

EXAMPLE

Expressions With Negative Exponents

Simplify each expression.

a.
$$3^{-2}$$

b.
$$(y)^{-6}$$

3⁻²
b.
$$(y)^{-6}$$

$$3^{-2} = \frac{1}{3^2} \leftarrow \text{Use a positive exponent.} \rightarrow (y)^{-6} = \frac{1}{y^6}$$

$$= \frac{1}{9} \leftarrow \text{Simplify.}$$

Expressions With Negative Exponents Simplify each expression.

a.
$$2^{-3}$$

b.
$$(p)^{-8}$$

$$2^{-3}$$

$$2^{-3} = \frac{1}{2^{3}} \leftarrow \text{Use a positive exponent.} \rightarrow = \frac{1}{p^{8}}$$

$$= \frac{1}{8} \leftarrow Simplify.$$

More Than One Way

Simplify the expression $4^3 \cdot 4^{-5}$.

Tina's Method

I can rewrite the expression with positive exponents.

$$=\frac{1}{16} \qquad \leftarrow \text{Simplify.}$$

So the expression is equal to $\frac{1}{16}$.

Eric's Method

To multiply numbers with the same base, I can add the exponents.

$$4^3 \cdot 4^{-5} = 4^{(3+(-5))}$$
 \leftarrow Add the exponents.
 $= 4^{-2}$ \leftarrow Simplify.
 $= \frac{1}{4^2}$ \leftarrow Use a positive exponent.
 $= \frac{1}{16}$ \leftarrow Simplify.

So the expression is equal to $\frac{1}{16}$.

Go to m.socrative.com room number 262013

wait for me to start your assignment (6 questions)

GPS	Student Page 197, Exercise 24:	
plat 4-2	rth Science Earth's crust is divided into large pieces called tectonic tes. The Pacific tectonic plate is moving northwest at a rate of about ² m each year. At this rate, how long will it take the plate to move in (about 2.5 miles)?	
Un	derstand	
1.	The equation $d = rt$ represents the relationship between distance d , r and time t . What measurements are given in the problem?	ate r,
2.	What measurement are you asked to find?	_
Pla	an and Carry Out	
3.	Solve the equation $d = \pi$ for t .	
4.	Substitute the values that are known into the equation for <i>t</i> .	_
5.	What is the common base?	
6.	When dividing powers with the same base, what do you do to the exponents?	
7.	Solve the equation for <i>t</i> .	onents?
Ch	neck	
8.	Solve the problem by writing the numbers in standard form. Does yo answer check?	ur
So	lve Another Problem	_
9.	A rectangular plot of land covers an area of 2^{13} square feet. You meathe length of the plot to be 2^7 feet. What is the width?	sure