# 1-8 Dividing Rational Numbers

#### What You'll Learn

To use the rules for dividing integers to divide rational numbers and to solve problems by dividing rational numbers

© CONTENT STANDARDS
7.NS.2, 7.NS.2.b,

#### Why Learn This?

In many places, a well is the source of water. Many wells today are drilled deep underground. Rational numbers can be used to show depths of wells.

Suppose some drillers want to drill a water well 212.5 m deep. If they plan to work for

5 days, they can divide the rational number -212.5 by 5 to determine the depth they need to drill each day.



#### **KEY CONCEPTS**

### **Dividing Rational Numbers**

You already know how to divide integers.

| Two Numbers    | Sign of Quotient      | Examples                                   |
|----------------|-----------------------|--------------------------------------------|
| Same Sign      | Quotient is positive. | $16 \div 2 = 8$<br>-16 \div (-2) = 8       |
| Opposite Signs | Quotient is negative. | $ -16 \div 2 = (-8)  16 \div (-2) = (-8) $ |

### EXAMPLE

### **Dividing Rational Numbers: Same Sign**

**1 a.** Find  $2.064 \div 0.24$ .

 $\begin{array}{ccc} 0.24 \overline{\smash)2.064} & \rightarrow & 24 \overline{\smash)206.4} \\ \uparrow & & 192 \\ \text{Multiply the divisor and the dividend by 100 to make the divisor a whole number.} & & 144 \\ 0 & & & 144 \\ \end{array}$ 

Place the decimal point in the 
← quotient above the decimal point in the dividend.

#### **Vocabulary Tip**

The quotient is the result of dividing a dividend by a divisor. Remember that a divisor can never be zero.

#### Example

#### Dividing Rational Numbers: Same Sign

**a.** Find  $7.055 \div 0.85$ .

| $0.85)\overline{7.055} \rightarrow$ | 8.3<br>85)705.5 |
|-------------------------------------|-----------------|
| <b>↑</b>                            | 680             |
| Multiply the divisor and the        | 255             |
| dividend by to make the             | 255             |
| divisor a whole number.             |                 |

Place the decimal point in the 
← quotient above the decimal point in the dividend.

**b.** Find 
$$-\frac{5}{6} \div -\frac{2}{3}$$
. 
$$-\frac{5}{6} \div -\frac{2}{3} = -\frac{5}{6} \times -\frac{3}{2} \qquad \qquad \leftarrow \text{Multiply by the reciprocal of the divisor.}$$

$$= -1 \left(\frac{5}{6}\right) \times -1 \left(\frac{3}{2}\right) \qquad \leftarrow \text{Write the rational numbers as products with } -1.$$

$$= -1 \times \left(\frac{5}{6} \times -1\right) \times \left(\frac{3}{2}\right) \leftarrow \text{Use the Associative Property.}$$

$$= -1 \times \left(-1 \times \frac{5}{6}\right) \times \left(\frac{3}{2}\right) \leftarrow \text{Use the Commutative Property.}$$

$$= (-1 \times -1) \times \left(\frac{5}{6} \times \frac{3}{2}\right) \leftarrow \text{Use the Associative Property.}$$

$$= 1 \times \left(\frac{5}{6} \times \frac{3}{2}\right) \qquad \leftarrow -1 \times -1 = 1$$

$$= \frac{5}{6} \times \frac{3}{2} \qquad \leftarrow \text{Multiply and simplify.}$$

$$= \frac{15}{12} \text{ or } 1\frac{1}{4}$$

**a.** 
$$-16.9 \div -1.3$$

**b.** 
$$-\frac{2}{3} \div \frac{1}{6}$$

# **EXAMPLE** Application: Meal Planning

2 How many  $1\frac{1}{2}$ -oz servings of cereal are in the larger cereal box at the right?

To find how many  $1\frac{1}{2}$ -oz servings are in  $19\frac{1}{2}$  oz, divide  $19\frac{1}{2}$  by  $1\frac{1}{2}$ .



$$19\frac{1}{2} \div 1\frac{1}{2} = \frac{39}{2} \div \frac{3}{2} \qquad \leftarrow \text{Write the mixed numbers as improper fractions.}$$

$$= \frac{39}{2} \cdot \frac{2}{3} \qquad \leftarrow \text{Multiply by } \frac{2}{3}, \text{ the reciprocal of } \frac{3}{2}.$$

$$= \frac{13}{12} \cdot \cancel{5}_{1} \qquad \leftarrow \text{Divide 39 and 3 by their GCF. Divide 2 by itself.}$$

$$= \frac{13}{1} = 13 \qquad \leftarrow \text{Simplify.}$$

There are thirteen  $1\frac{1}{2}$ -oz servings in the larger cereal box.

**②** Dividing Rational Numbers: Different Sign

#### **Quick Check**

2. Find each quotient.

**a.** 
$$-\frac{3}{4} \div \frac{1}{8}$$

**b.** 
$$5\frac{4}{9} \div -\frac{7}{10}$$

## **EXAMPLE** Dividing Rational Numbers: **Different Sign**

# 3 Find $-3\frac{5}{6} \div 2\frac{1}{3}$ .

$$-3\frac{5}{6} \div 2\frac{1}{3} = -\frac{23}{6} \div \frac{7}{3} \qquad \leftarrow \text{Write both mixed numbers as fractions.}$$

$$= \left(-1 \times \frac{23}{6}\right) \div \frac{7}{3} \leftarrow \text{Write the negative number as a product with } -1.$$

$$= \left(-1 \times \frac{23}{6}\right) \times \frac{3}{7} \leftarrow \text{Multiply by the reciprocal of the divisor.}$$

$$= -1 \times \left(\frac{23}{6} \times \frac{3}{7}\right) \leftarrow \text{Use the Associative Property.}$$

$$= -1 \times \left(\frac{23}{14}\right) \leftarrow \text{Multiply.}$$

$$= -\frac{23}{14} \text{ or } -1\frac{9}{14} \leftarrow \text{Simplify.}$$

## A Find each product.

**7.** 
$$13.65 \div 2.1$$
 **8.**  $-8\frac{2}{3} \div -2\frac{2}{3}$  **9.**  $-3.9 \div -1.5$ 

**9.** 
$$-3.9 \div -1.5$$

**10.** 
$$-9\frac{9}{10} \div \left(-2\frac{3}{4}\right)$$

**11.** 
$$-27.9 \div (-6.2)$$

**12.** 
$$8\frac{1}{2} \div 1\frac{1}{2}$$

$$13. \left(-5\frac{1}{3}\right) \div \left(\frac{2}{3}\right) \blacksquare$$

10. 
$$-9\frac{9}{10} \div \left(-2\frac{3}{4}\right)$$
 11.  $-27.9 \div (-6.2)$  12.  $8\frac{1}{2} \div 1\frac{1}{2}$  13.  $\left(-5\frac{1}{3}\right) \div \left(\frac{2}{3}\right)$  14.  $3.7 \div (-3.7)$  15.  $\left(-\frac{5}{6}\right) \div \left(\frac{5}{7}\right)$  16.  $-\frac{4}{5} \div \left(\frac{8}{11}\right)$  17.  $-20.4 \div 1.2$  18.  $3 \div (-0.375)$  19.  $1\frac{4}{5} \div \frac{5}{6}$  20.  $-15.64 \div 2.3$  21.  $\left(6\frac{2}{5}\right) \div \left(-1\frac{3}{5}\right)$ 

**16.** 
$$-\frac{4}{5} \div \left(\frac{8}{11}\right)$$

**17.** 
$$-20.4 \div 1.2$$

**18.** 
$$3 \div (-0.375)$$

**19.** 
$$1\frac{4}{5} \div \frac{5}{6}$$

**20.** 
$$-15.64 \div 2.3$$

**21.** 
$$\left(6\frac{2}{5}\right) \div \left(-1\frac{3}{5}\right)$$