Converse of the Pythagorean Theorem

I can use the converse of the Pythagorean Theorem to determine if a triangle is a right triangle.

You will need your notebook, a clicker, and access to a calculator that does squares and square roots.

Previously, we learned how to determine if three lengths could be joined together to form any type of a triangle--the Triangle Inequality Theorem. (The sum of the two smaller lengths must be greater than the third length.)

Today, we will determine not only if the lengths can form a triangle, but specifically, if they can form a right triangle.

First, a clicker warm-up session focusing our minds back on the Triangle Inequality Theorem.

Is it possible to construct a triangle with the given side lenghts? 6 ft, 10 ft, 20 ft.

Is it possible to construct a triangle with side lenghts of 1.5m, 2.5m and 3.5 m?

Today, we will look at the converse of the Pythagorean theorem.

I'm considering what I know about the Pythagorean Theorem.

- *It is only about right triangles.
- *The two shorter sides of the right triangle are the legs.
- *Legs are always labeled a and b.
- *The longest side of the right triangle is called the hypotenuse, and it is always opposite the right angle.
- *The theorem states $a^2+b^2=c^2$

The Converse of the Pythagorean Theorem:

If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

I'm going to start with what I know.

The Pythagorean Theorem states that $a^2+b^2=c^2$ so then I need to add 32+42 and see what it equals $3^2 = 9$ $4^2 = 16$ 9+16=25 The square root of 25 is 5, so this theorem proves the side lengths are 3, 4, & 5.

However, what if I am given a triangle without the square corner symbol? How can I prove it is a right triangle? That is what the Converse of the pythagorean Theorem is all about.

Now I need to prove that lengths of 3, 4, & 5 form a right triangle. I need to check to see that $3^2+4^2=5^2$ $3^2 = 9$ $4^2 = 16$ $5^2 = 25$ 9+16=25 Yes, I have proven that

this is a right triangle.

If the equation $a^2 + b^2 = c^2$ is true for the lengths of the sides of a triangle, then the triangle is a right triangle. This method is called the Converse of the Pythagorean Theorem. You can use the Converse of the Pythagorean Theorem to determine if a triangle is a right triangle.

EXAMPLE

Identifying a Right Triangle

using the Convers of the Pythagorean Theorem, substitute the greatest side length for c

Determine whether the triangle is a right triangle. Explain.

$$a^2+b^2\stackrel{?}{=}c^2$$
 \leftarrow Use the Pythagorean Theorem.
 $6^2+4.5^2\stackrel{?}{=}7.5^2$ \leftarrow Substitute 6 for a, 4.5 for b, and 7.5 for c.
 $36+20.25\stackrel{?}{=}56.25$ \leftarrow Simplify. Use a calculator.
 $56.25=56.25$

7.5 cm 4.5 cm

The equation is true, so the triangle is a right triangle.

Let's think through a few problems together.

Determine whether the lengths of 10, 24, & 26 can form a right triangle.

First, I want to draw the triangle, and then label the side lengths.

I put the 26 on the longest side. Now, using the Pythagorem Theorem, I want to see if $10^2+24^2=26^2$ $10^2=100,24^2=576 \& 26^2=676$, and 100+576=676. Yes, is a right triangle.

Grab your clicker and get access to a calculator (your ipod, cellphone, computer, etc.)

Let's try a few more as clicker questions.

Feel free to draw out the problems to help visualize the problems.

Determine whether the side lengths of a right triangle could be 11 in, 21 in, and 30 in.

Determine whether the side lengths of a right triangle could be 8 cm, 9 cm, and 12 cm.

The converse of the Pythagorean Theorem is used to determine if three segments can form an equilateral triangle.

Power down your clickers and put them away.

Grab a piece of scratch paper. Write your name on it, and copy down these three problems.

- 1. 12, 16, 20
- 2. 3.4, 16, 20.2
- 3. 3.8, 5.2, 8.5

Work with your table partners to determine if any one or more of these problems could form a right triangle. Be prepared to prove your answers.

Hand your papers in when directed to do so.

Your assignment (Work time rest of today and tomorrow - due end of class Wednesday)

The front view of a A-frame house is triangle. The lengths of its sides are 39 feet, 39 feet, and 28 feet.

Use geometer's sketchpad to draw the front lines of an A-frame house. Use the text feature to write your response to these questions:

1. Is the front view of the house in the shape of a right triangle?

2. Why or why not?

3. Include your name in your sketch. You will be required to Print off your sketch and hand it in on Wednesday.