6-4 Areas of Other Figures

What You'll Learn

© CONTENT STANDARDS

7.G.6

To find the area of a trapezoid and the areas of irregular figures

New Vocabulary bases of a trapezoid, height of a trapezoid

Why Learn This?

If you know how to find the area of simple figures, you can find the area of an irregular figure, such as the area of a backyard deck.

The formula for the area of a trapezoid follows from the formula for the area of a parallelogram.

The two parallel sides of a trapezoid are the **bases of a trapezoid**, with lengths b_1 and b_2 . The **height of a trapezoid** h is the length of a perpendicular segment connecting the bases.

If you put two identical trapezoids together, you get a parallelogram. The area of the parallelogram is $(b_1+b_2)h$. The area of one trapezoid equals $\frac{1}{2}(b_1+b_2)h$.

type this in your notes

KEY CONCEPTS

Area of a Trapezoid

The area of a trapezoid is one half the product of the height and the sum of the lengths of the bases.

$$b_1$$
 b_2

$$A = \frac{1}{2}h(b_1 + b_2)$$

Vocabulary and Key Concepts

Area of a Trapezoid

The area of a trapezoid is **one half** the product of the **height** and the sum of the lengths of the **bases**

 b_1 b_2

$$A = \frac{1}{2} \left[h \left(b_1 + b_2 \right) \right]$$

If you put two identical trapezoids together, you get a parallelogram. The area of the parallelogram is $(b_1 + b_2)h$. The area of one trapezoid is $\frac{1}{2}(b_1 + b_2)h$.

 b_1 p_2 p_2 p_3 p_4 p_4 p_4 p_5 p_6

The bases of a trapezoid are the two parallel sides.

The height of a trapezoid is the length of a perpendicular segment connecting the bases.

EXAMPLE Finding the Area of a Trapezoid

Find the area of the trapezoid shown at the right.

$$A = \frac{1}{2}h(b_1 + b_2) \leftarrow \text{Use the area formula}$$

$$= \frac{1}{2}(15)(8.5 + 13.5) \leftarrow \text{Substitute for } h, b_1,$$

$$= \frac{1}{2}(15)(22) \leftarrow \text{Add.}$$

$$= 165 \leftarrow \text{Multiply.}$$

The area of the trapezoid is 165 cm².

Examples

1 Finding the Area of a Trapezoid Find the area of the trapezoid.

7.2 cm 6 cm 10 cm

6 cm

EXAMPLE

Application: Geography

At Crater of Diamonds State Park in Arkansas, visitors can search for and keep diamonds and other gems.

Estimate the area of Arkansas by finding the area of the trapezoid shown.

$$A = \frac{1}{2}h(b_1 + b_2) \leftarrow \text{Use the area formula}$$

$$= \frac{1}{2}(242)(250 + 190) \leftarrow \text{Substitute for } h, b_1,$$

$$= \frac{1}{2}(242)(440) \leftarrow \text{Add.}$$

$$= 53,240 \leftarrow \text{Multiply.}$$

The area of Arkansas is about 53,240 mi².

Geography Estimate the area of the figure by finding the area of the trapezoid.

$$A = \frac{1}{2} \bigcirc (\bigcirc + b_2) \qquad \leftarrow \text{ Use the area formula for a trapezoid.}$$

$$= \frac{1}{2} \bigcirc (\bigcirc + \bigcirc) \leftarrow \text{ Substitute for } h, b_1, \text{ and } b_2.$$

$$= \frac{1}{2} \bigcirc (\bigcirc) \leftarrow \text{ Add.}$$

$$= \boxed{272} \leftarrow \text{ Multiply.}$$

The area of the figure is about 272 ft².

More Than One Way

Anna and Ryan are helping their friends build a large wooden deck. What is the area of the deck?

Anna's Method

I'll subtract the area of the triangle from the area of the rectangle.

Area of the rectangle:

Area of the triangle:

$$A = bh$$

= (27)(12) = 324

$$A = \frac{1}{2}bh$$

= $\frac{1}{2}(12)(9) = 54$

Now I'll subtract the area of the triangle from the area of the rectangle.

$$A = 324 - 54 = 270$$

The area of the deck is 270 ft^2 .

Ryan's Method

I'll add the areas of the rectangle and the trapezoid.

Area of the rectangle: Area of the trapezoid:

$$A = bh$$
 $A = \frac{1}{2}h(b_1 + b_2)$
= 180 $A = \frac{1}{2}(12)(3 + 12)$

Now I'll add the two areas together.

$$A = 180 + 90 = 270$$

The area of the deck is 270 ft².

Check Your Understanding

1. **Vocabulary** The perpendicular distance between the two parallel sides of a trapezoid is called the _?_ of the trapezoid.

Identify the bases b_1 and b_2 and height h of each trapezoid below.

2. 6 m 3.7 m 3.6 m 4.2 m

Quick Check

1. Find the area of each trapezoid.

a. 6 m 4.5 m

9.5 m

2. Estimate the area of the figure by finding the area of the trapezoid.

You have an assignment worksheet, and time to begin working on it.

Find the area of each tra	pezoid.			
1. 18 ft 11 ft 12 ft	2. t 10.6 mm	9.7 mm 10.	3. 6 mm 15 in.	12 in. 17 in. 20 in.
4. 21.5 mi 7 mi 6 mi	5. 7 9 mi	8 m 10 m 14 m	6.	18 in. 12 in. 6 in.
7. 6 ft 18 ft 26 ft 39 ft	8. 9 cm	12 cm 3 cm 4 cm 2 cm		64 m
Solve. 10. The flag of Switzerl	des of the cros	white cross on a red bases has a length of 15 cm.	ckground.	
b. The flag has dim Find the area of				_
 A trapezoid has an the possible whole- 		re units, and a height of as for the bases?	1 unit. What are	_
Practice			Course 2 Le	sson 6-4 209

441197_C2_Ch6_WKbk_Ver-2 indd 209

Class

Date

10/10/12 2:21 PM